Ejercicio Práctico Cálculo de Carbon Intensity Indicator CII

1er Taller Regional

Descarbonización Marítima a Través de Soluciones de Eficiencia Energética

18 y 19 de Marzo, 2025

Ejercicio Práctico

Cálculo de CII

Particularidades del buque

Crude Tanker

IMO: XXXXXXX

Bandera: XXXXXX

LOA: 244 m

Manga: 42.04 m

Peso Muerto (DWT): 105093 tons

Bombas de descarga: Vapor

Fig. 1: Mapa de Viaje

Datos del viaje (round trip)

Fechas: 04/06/2024 al 14/07/2024

Total distancia de distancia recorrida: 5201 nm

Total de combustible consumido: 1164 tons

Consumo Calderas descarga: 352,98 tons

Tipo de Combustible: RMG380

Horas buque fondeado esperando puerto: 245

Horas buque en navegación: 307

Horas buque descargando: 131

Horas buque en Maniobras: 42

Horas buque en drifting (deriva): 250

Carga Transportada: Petróleo

Cargo: 102000 tons

Resoluciones aplicables: MEPC.352(78) / 353(78) / 338(76) / 354(78) / 355(78)

Paso 1: Calcular CII alcanzado (attained).

¿Cuál es el valor alcanzado sin corregir?

Pasos y etapas de cálculo:

1) Calculamos el Indicador de intensidad de Carbono alcanzado por el buque (CIIalcanzado), este indicador mide la eficiencia de un buque en términos de emisiones de CO_2 por tonelada de Peso Muerto (DWT) por milla náutica , su fórmula es :

$$CII\ alcanzado = \frac{Emisiones\ de\ CO_2(toneladas)}{Peso\ muerto\ x\ Millas\ n\'auticas\ recorridas}$$

Las Emisiones de ${\it CO}_{\it 2}$ varían en cada combustible, es decir:

Emisiones de CO_2 = Consumo de combustible x Factor de Carbono

El factor de carbono es un valor que indica cuántas toneladas de ${\it CO}_2$ se emiten por cada tonelada de combustible consumido.

Para nuestro caso al ser un RMG380, su factor de carbono es 3.114

El consumo de combustible son 1164 tons, por lo tanto:

$$Emisiones de CO_2 = x =$$

Las toneladas de peso muerto (DWT) son 105.093 tons

Las millas náuticas recorridas son 5201 nm.

Entonces el CII será:

$$CII \ alcanzado = x \ 1.000.000 =$$

El valor de 1.000.000 es usado porque el indicador debe de ir en unidades de gCO_{γ}/t m

Paso 2: Calcular CII referencia. Resolución MEPC.353(78)

¿Desde qué valor debo partir?

2) Cálculo del *CII referencia*. Resolución MEPC.353(78). Este indicador es un valor base determinado por la OMI que indica cuál debería ser el rendimiento promedio esperado para un buque con ciertas características.

Su fórmula es:

$$CII \ ref = a * Capacidad^{-c}$$

Para obtener los valores de las variables a y c tenemos que usar la tabla ubicada en la Resolución MEPC.353(78).

Entramos a la tabla según el tipo de buque

Cuadro 1: Parámetros para determinar los niveles de referencia específicos del tipo de buque de 2019

		Tipo de buque	Capacid ad	a	c
Granelero	Igual o	superior a 279 000 TPM	279 000	4 745	0,622
	inferio	inferior a 279 000 TPM		4 745	0,622
_	igual o	superior a 65 000	TPM	14405E7	2,071
Gasero	inferio	r a 65 000 TPM	TPM	8 104	0,639
Buque tanqu	е		TPM	5 247	0,610
Buque porta	contenedo	ores	TPM	1 984	0,489
Buque de		Igual o superior a 20 000 TPM	ТРМ	31 948	0,792
carga genera	ıl	inferior a 20 000 TPM	TPM	588	0,3885
Buque de ca	rga refrige	erada	TPM	4 600	0,557
Buque de carga combinada		TPM	5 119	0,622	
Buque para el	Igual o superior a 100 000 TPM		TPM	9,827	0,000
transporte de GNL		Igual o superior a 65 000 TPM pero inferior a 100 000 TPM		14479E10	2,673
do ONE	inferior a	a 65 000 TPM	65 000	14479E10	2,673
Buque de ca	rga	Arqueo bruto igual o superior a 57 700	57 700	3 627	0,590
rodada (buqu para el trans	ie	un arqueo bruto igual o superior a 30 000 pero inferior a 57 700	Arqueo bruto	3 627	0,590
de vehículos)	inferior a 30 000 TPM	Arqueo bruto	330	0,329
Buque de carga rodada		Arqueo bruto	1 967	0,485	
Bugue de po	saie de	Buque de pasaje de transbordo rodado	Arqueo bruto		
Buque de pasaje de transbordo rodado		Nave de gran velocidad proyectada de conformidad con el capítulo X del Convenio SOLAS	Arqueo bruto	4 196	0,460
Buque de pa	saje dedio	cado a cruceros	Arqueo bruto	930	0,383

Así obtenemos: a = 5247; c = 0.610; TPM = 105093

$$CII\ ref =$$

Paso 3 : Calcular CII valor prescrito año 2024. Resolución MEPC.338(76)

¿Qué valor debe alcanzar el buque según el año?

 Para asegurar que se reduzca el impacto ambiental y cumplir con los objetivos anuales se afecta el indicador por un factor de referencia. Resolución.338(76)

CII prescrito requerido = CII ref x factor de reducción 2024

Año	Factor de reducción con respecto a 2019	
2023	5 %*	
2024	7 %	
2025	9 %	
2026	11 %	
2027	_ **	
2028	_ **	
2029	- **	
2030	- **	

Cuadro 2: Factores de reducción en % respecto del año 2019

$$CII\ prescrito\ requerido\ =\ x\ 0.93\ =$$

Paso 4: Calcular vectores. Resolución MEPC.354(78)

¿Qué rating energético tiene el buque?

4) Para determinar el rating energético que tiene el buque debemos hacer una comparativa y verificar si estamos dentro de determinados rangos. Resolución MEPC 354(78).

Los límites pueden determinarse a partir del CII operacional anual prescrito junto con los vectores, que indican la dirección y la distancia a la que se desvían del valor prescrito (señalados como vectores *dd para facilitar*)

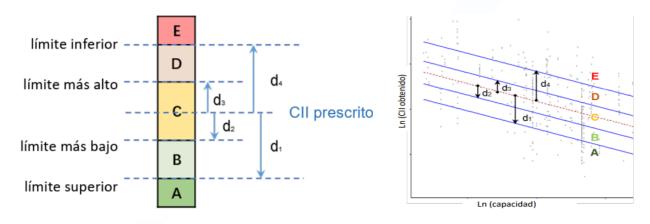


Fig. 2 y 3: Vectores y Esquema de reducción de CII

Tipo de buque		Capacidad en el	Vectores <i>dd</i> (tras la transformación exponencial)			
		cálculo del CII	exp(d1)	exp(d2)	exp(d3)	exp(d4)
Granelero		TPM	0,86	0,94	1,06	1,18
Gasero	Igual o superior a 65 000 TPM	TPM	0,81	0,91	1,12	1,44
	inferior a 65 000 TPM	TPM	0,85	0,95	1,06	1,25
Buque tanque	TPM	0,82	0,93	1,08	1,28	
Buque portacontene	IPM	0,83	0,94	1,07	1,19	
Buque de carga gene	eral	TPM	0,83	0,94	1,06	1,19
Buque de carga refri	gerada	TPM	0,78	0,91	1,07	1,20
Buque de carga combinada		TPM	0,87	0,96	1,06	1,14
Buque para el	Igual o superior a 100 000 TPM	TPM	0,89	0,98	1,06	1,13
transporte de GNL	inferior a 100 000 TPM		0,78	0,92	1,10	1,37
Buque de carga rodada (buque para el transporte de vehículos)		Arqueo bruto	0,86	0,94	1,06	1,16
Buque de carga rodada		Arqueo bruto	0,76	0,89	1,08	1,27
Buque de pasaje de transbordo rodado		Arqueo bruto	0,76	0,92	1,14	1,30
Buque de pasaje de	Arqueo bruto	0,87	0,95	1,06	1,16	

Cuadro 3: Vectores dd para determinar el rating del buque

Raiting		CII prescripto x d	CII corregido	Categoria
Limite superior	d1=0,82	CII prescripto requerido x d1= 3,459	Cllcorregido < 3,459	Α
Limite más bajo	d2=0,93	CII prescripto requerido x d2= 3,923	3,459 <cii corregido<3,923<="" td=""><td>В</td></cii>	В
Limite más alto	d3 =	CII prescripto requerido x d3=	3,923 <cii <4,556<="" corregido="" td=""><td>С</td></cii>	С
Limite inferior	d4=	CII prescripto requerido x d4=	4,556 < CII corregido <5,400	D
			CII corregido> 5,400	E

Cuadro 4: Cálculo de Rating energético no corregido

Por lo tanto el Rating obtenido no corregido es:

Paso 5: Factores de corrección MEPC.355(78)

¿Cómo puedo reducir el rating basado en la energía que es de la carga o ciertas operaciones?

5) Factores de corrección. Resolución MEPC 355(78). El Indicador de Intensidad de Carbono (*CII corregido*) se le deben aplicar determinados factores de corrección que ajustan el cálculo según ciertas condiciones operativas o características del buque

$$\frac{\sum_{j} C_{Fj} x \{FC_{j} - (FC_{voyage,j} + TF_{j} + (0.75 - 0.03y_{i})x(FC_{electrical,j} + FC_{boiler,j} + FC_{others,j}))\}}{f_{i} x f_{m} x f_{c} x f_{iVSE} x Capacity x (D_{t-} D_{x})}$$

Donde:

- j Es el tipo de combustible
- C_{Fj} representa el factor de conversión de la masa de combustible en masa de CO2 para el combustible de tipo j
- FC_j es la masa total del tipo de combustible j consumido en el año civil, registrada en el sistema de recopilación de datos de la OMI, pasada a gramos
- FC_{voyage,j}: Corrección por viaje
 - Situaciones detalladas en MARPOL Anexo VI-Regla 3.1
 - Navegación en condiciones de hielo
- TF_i: Corrección por viaje STS
 - Navegación debe durar menos de 72 hs y la distancia navegada menor a 600 millas náuticas
- FC_{electrical, i} Consumo eléctrico
 - Tanqueros : Bombas de carga /descarga
 - Portacontenedores : Consumo de contenedores refrigerados
- FC Consumo de Caldera
- Calefacción de carga y desembarque de carga en buques tanque
- FC others i Otros consumos
- Tanqueros : bombas de descarga automática
- f_i Es el factor de corrección de la capacidad para los buques con clasificación para la navegación en hielo. Resolución MEPC 308(73); 322(74); 332(76)
- f_m Es el factor para los buques con clasificación para la navegación en hielo IA Supere IA
- f_c Representa los factores de corrección de la capacidad cúbica para buques tanque quimiqueros. Resolución MEPC.308(73); MEPC.322(74); MEPC.332(76)
- f_{iVSE} Representa el factor de corrección para las mejoras estructurales voluntarias específicas del buque. Resolución MEPC.322(74) y MEPC.332(76)

- Capacity: Es la capacidad de peso muerto (DWT) del buque
- ullet : Representa la distancia total recorrida (en millas marinas) registrada en el sistema de recopilación de datos de la OMI
- D_x : Representa la distancia viajada (en millas marinas) para períodos de viaje que puedan deducirse del cálculo del CII

$$CII\ corregido\ = \frac{\sum_{j} C_{Fj} x \{FC_{j} - (FC_{voyage\ j} + TF_{j} + \left(0.75 - 0.03y_{i}\right) x \left(FC_{electrical,\ j} + FC_{boiler\ ,\ j} + FC_{others\ ,\ j})\right)\}}{f_{i} x f_{m} x f_{c} x f_{iVSE} x Capacity x \left(D_{t-}D_{x}\right)}$$

$$CII\ corregido\ = \frac{\sum_{j} C_{Fj} x \{FC_{j} - (0 + 0 + (0.75 - 0.03)x \left(0 + FC_{boiler,j} + 0)\right)\}}{f_{i} x f_{m} x f_{c} x f_{iVSE} x Capacity x \left(D_{t-} 0\right)}$$

$$CII\ corregido = \frac{3,114 \, x \{ \, 1.164.000.000 \, g - (0,75) \, x \, (352.980.000) \} \}}{1 \, x \, 1 \, x \, 1 \, x \, 1 \, x \, 105.093 \, x \, (5.201)}$$

$$CII\ corregido = \frac{3,114\ x(899265000)}{105093\ x(5201)}$$

$$CII\ corregido = 5,123\ gCO_2/t*nm$$

Raiting		CII prescripto x d	CII corregido	Categoria	
Limite superior	d1=0,82	CII prescripto requerido x d1= 3,459	Cllcorregido < 3,459	Α	
Limite más bajo	d2=0,93	CII prescripto requerido x d2= 3,923	3,459 <cll corregido<3,923<="" td=""><td>В</td></cll>	В	
Limite más alto	d3 = 1,08	CII prescripto requerido x d3=4,556	3,923 <cii <4,566<="" corregido="" td=""><td>С</td></cii>	С	
Limite inferior	d4= 1,28	CII prescripto requerido x d4= 5,400	4,566 < CII corregido < 5,400	D	
			CII corregido> 5,400	E	

Por lo tanto el Rating corregido obtenido es: ¿ A / B / C / D / E?

Notas:

Código QR para cuestionario

| MTCC LATIN AMERICA